23 research outputs found

    The Global Navigation System Scope (GNSScope): a toolbox for the end-to-end modelling simulation and analysis of GNSS

    Get PDF
    The thesis provides a detailed overview of the work carried out by the author over the course of the research for the award of the degree of Doctor of Philosophy at the University of Westminster, and the performance results of the novel techniques introduced into the literature. The outcome of the work is collectively referred to as the Global Navigation System Scope (GNSScope) Toolbox, offering a complete, fully reconfigurable platform for the end-to-end modeling, simulation and analysis of satellite navigation signals and systems, covering the signal acquisition, tracking, and range processing operations that take place in a generic Global Navigation Satellite System (GNSS) receiver, accompanied by a Graphical User Interface (GUI) providing access to all the techniques available in the toolbox. Designed and implemented entirely in the MATLAB mathematical programming environment using Software Defined Radio (SDR) receiver techniques, the toolbox offers a novel new acquisition algorithm capable of handling all Phase-Shift Keying (PSK) type modulations used on all frequency bands in currently available satellite navigation signals, including all sub-classes of the Binary Offset Carrier (BOC) modulated signals. In order to be able to process all these signals identified by the acquisition search, a novel tracking algorithm was also designed and implemented into the toolbox to track and decode all acquired satellite signals, including those currently intended to be used in future navigation systems, such as the Galileo test signals transmitted by the GIOVE satellites orbiting the Earth. In addition to the developed receiver toolbox, three novel algorithms were also designed to handle weak signals, multipath, and multiple access interference in GNSScope. The Mirrored Channel Mitigation Technique, based on the successive and parallel interference cancellation techniques, reduces the hardware complexity of the interference mitigation process by utilizing the local code and carrier replicas generated in the tracking channels, resulting in a reduction in hardware resources proportional to the number of received strong signals. The Trigonometric Interference Cancellation Technique, used in cross-correlation interference mitigation, exploits the underlying mathematical expressions to simplify the interference removal process, resulting in reduced complexity and execution times by reducing the number of operations by 25% per tracking channel. The Split Chip Summation Technique, based on the binary valued signal modulation compression technique, enhances the amount of information captured from compressing the signal to reveal specific filtering effects on the positive and negative polarity chips of the spreading code. Simulation case studies generated entirely using the GNSScope toolbox will be used throughout the thesis to demonstrate the effectiveness of the novel techniques developed over the course of the research, and the results will be compared to those obtained from other techniques reported in the literature

    GNSScope and the split chip compression technique

    Get PDF
    The presence of multipath due to obstructions on the signal path coupled with transmitter and channel based perturbations, can significantly degrade the quality of the received satellite navigation signals, resulting in the non-detection of weaker visible satellites, loss of lock on acquired satellites, and increased pseudo-range errors. In this paper, we present a novel technique based on the binary-valued signal compression method, for the detection, identification and compensation of pseudo ranging code discrepancies and signals on the multipath. Following a brief overview of the system, simulation case studies carried out entirely using the in-house developed satellite navigation receiver development, emulation and analysis platform Global Navigation System Scope (GNSScope) will be presented verifying the results

    A computationally efficient DAB bit-stream processor

    Get PDF
    This paper describes an MPEG (moving pictures expert group) audio layer II - LFE (lower frequency extension) bit-stream processor targeting DAB (digital audio broadcasting) receivers that will handle the decoding of the frames in a computationally efficient manner to provide a synthesis sub-band filter with the reconstructed sub-band samples. Focus is given to the frequency sample reconstruction part, which handles the re-quantization and re-scaling of the samples once the necessary information is extracted from the frame. The comparison to a direct implementation of the frequency sample reconstruction block is carried out to prove increased computational efficiency

    A low complexity cross-correlation interference mitigation technique for GNSS

    No full text
    The finite length Gold codes used in satellite navigation systems limit their dynamic range, resulting in the introduction of unwanted peaks that can mask out signals of interest. In this paper, a novel cross-correlation interference mitigation technique dealing with this issue is introduced. A brief overview of the multiple access interference problem inherent in satellite navigation systems using the code division multiple access technique is followed by the details of the proposed method. Simulation case studies and analyses of the results detailing weak signal scenarios, carried out entirely using the Global Navigation System Scope, are presented. A comparison of the results is given in the conclusions section along with remarks on the performance of the proposed method and future work to be carried out
    corecore